Newer
Older
rnn_bachelor_thesis / Report / New Version / main.aux
\relax 
\providecommand\hyper@newdestlabel[2]{}
\providecommand\HyperFirstAtBeginDocument{\AtBeginDocument}
\HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined
\global\let\oldcontentsline\contentsline
\gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}}
\global\let\oldnewlabel\newlabel
\gdef\newlabel#1#2{\newlabelxx{#1}#2}
\gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}}
\AtEndDocument{\ifx\hyper@anchor\@undefined
\let\contentsline\oldcontentsline
\let\newlabel\oldnewlabel
\fi}
\fi}
\global\let\hyper@last\relax 
\gdef\HyperFirstAtBeginDocument#1{#1}
\providecommand\HyField@AuxAddToFields[1]{}
\providecommand\HyField@AuxAddToCoFields[2]{}
\providecommand{\mciteSetMaxWidth}[3]{\relax}
\providecommand{\mciteSetMaxCount}[3]{\relax}
\@writefile{toc}{\contentsline {section}{\numberline {1}Standard Model}{1}{section.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Elementary particles and forces}{1}{subsection.1.1}}
\newlabel{intro_elem_part}{{1.1}{1}{Elementary particles and forces}{subsection.1.1}{}}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Quarks in the Standard Model\relax }}{1}{table.caption.2}}
\providecommand*\caption@xref[2]{\@setref\relax\@undefined{#1}}
\newlabel{Quark_SM_table}{{1}{1}{Quarks in the Standard Model\relax }{table.caption.2}{}}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Leptons in the standard model\relax }}{2}{table.caption.3}}
\newlabel{Lepton_SM_table}{{2}{2}{Leptons in the standard model\relax }{table.caption.3}{}}
\newlabel{Lepton_table}{{2}{2}{Leptons in the standard model\relax }{table.caption.3}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Fundamental forces\relax }}{2}{table.caption.4}}
\newlabel{fund_forces_table}{{3}{2}{Fundamental forces\relax }{table.caption.4}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Interaction rules}{3}{subsection.1.2}}
\newlabel{beta-decay_feynman}{{1a}{4}{Feynman diagram of the $\beta $-decay\relax }{figure.caption.5}{}}
\newlabel{sub@beta-decay_feynman}{{a}{4}{Feynman diagram of the $\beta $-decay\relax }{figure.caption.5}{}}
\newlabel{muon-decay_feynman}{{1b}{4}{Feynman diagram of a $\mu $-decay\relax }{figure.caption.5}{}}
\newlabel{sub@muon-decay_feynman}{{b}{4}{Feynman diagram of a $\mu $-decay\relax }{figure.caption.5}{}}
\citation{Alves:2008zz}
\citation{Alves:2008zz}
\@writefile{toc}{\contentsline {section}{\numberline {2}\unhbox \voidb@x \hbox {LHCb}\xspace  Experiment}{5}{section.2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}\unhbox \voidb@x \hbox {LHC}\xspace  }{5}{subsection.2.1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.2}Detector}{5}{subsection.2.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces A schematic view of the non-bending plane of the \unhbox \voidb@x \hbox {LHCb}\xspace  detector. Particles are produced in the collision point on the left side inside the vertex locator and are bent by the magnet afterwards.\relax }}{5}{figure.caption.6}}
\newlabel{fig:lhcb_schematic}{{2}{5}{A schematic view of the non-bending plane of the \lhcb detector. Particles are produced in the collision point on the left side inside the vertex locator and are bent by the magnet afterwards.\relax }{figure.caption.6}{}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.1}Vertex locator}{6}{subsubsection.2.2.1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.2}Tracking system}{6}{subsubsection.2.2.2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.3}RICH\xspace  }{6}{subsubsection.2.2.3}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.4}Calorimeter}{6}{subsubsection.2.2.4}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.2.5}Muon system}{7}{subsubsection.2.2.5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.3}Trigger}{7}{subsection.2.3}}
\newlabel{sec:trigger}{{2.3}{7}{Trigger}{subsection.2.3}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {2.4}Software}{7}{subsection.2.4}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {2.4.1}Track reconstruction and fit}{7}{subsubsection.2.4.1}}
\@writefile{toc}{\contentsline {section}{\numberline {A}Appendix}{10}{appendix.A}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.1}Preselection}{10}{subsection.A.1}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Variables used in the preselection as described in Sect. \ref  {sec:preselection}\relax }}{10}{figure.caption.8}}
\@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Variables used in the preselection as described in Sect. \ref  {sec:preselection}\relax }}{11}{figure.caption.9}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.2}Reweighting}{12}{subsection.A.2}}
\@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces A two dimensional distribution and its projections. Even tough the distributions can be easily discriminated by looking at their higher order -- second order here -- correlations, there projections do not reveal that.\relax }}{12}{figure.caption.10}}
\newlabel{fig:appendix:reweighting:ndim_dist_projections}{{4}{12}{A two dimensional distribution and its projections. Even tough the distributions can be easily discriminated by looking at their higher order -- second order here -- correlations, there projections do not reveal that.\relax }{figure.caption.10}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces ROC AUC bias with weights visualized. The reweighter works quite well for this example and assigns a weight of 5 to the single blue point. Then the data is split in two different ways (Fold 1 and 2) into training and test data in order to compare two possible outcomes. The total outcome can be thought as an average of both cases.\relax }}{12}{figure.caption.11}}
\newlabel{fig:appendix:reweighting:roc_auc_bias}{{5}{12}{ROC AUC bias with weights visualized. The reweighter works quite well for this example and assigns a weight of 5 to the single blue point. Then the data is split in two different ways (Fold 1 and 2) into training and test data in order to compare two possible outcomes. The total outcome can be thought as an average of both cases.\relax }{figure.caption.11}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {A.3}Selection}{13}{subsection.A.3}}
\@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces ROC curve of the XGB trained on the MC against the right side band ({\ensuremath  {\ensuremath  {B}\xspace  }}\xspace  mass vertex constrained $> 5600\ensuremath  {\mathrm  {\tmspace  +\thinmuskip {.1667em}Me\kern -0.1em V}}\xspace  $) of \ensuremath  {{\ensuremath  {{\ensuremath  {\ensuremath  {B}\xspace  }}\xspace  ^+}}\xspace  \tmspace  -\thinmuskip {.1667em}\ensuremath  {\rightarrow }\xspace  {\ensuremath  {{\ensuremath  {\ensuremath  {K}\xspace  }}\xspace  ^+}}\xspace  {\ensuremath  {{\ensuremath  {\ensuremath  {\pi }\xspace  }}\xspace  ^+}}\xspace  {\ensuremath  {{\ensuremath  {\ensuremath  {\pi }\xspace  }}\xspace  ^-}}\xspace  {\ensuremath  {\ensuremath  {e}\xspace  ^+\ensuremath  {e}\xspace  ^-}}\xspace  }\xspace  .\relax }}{13}{figure.caption.12}}
\bibstyle{LHCb}
\bibdata{bib/ML}
\bibcite{PhysRevD.2.1285}{1}
\bibcite{Aaij:2014ora}{2}
\bibcite{Aaij:2017vbb}{3}
\bibcite{Aaij:2014kwa}{4}
\bibcite{PhysRevD.78.074007}{5}
\bibcite{Alves:2008zz}{6}
\bibcite{LHCb-PROC-2010-056}{7}
\bibcite{Pivk:2004ty}{8}
\bibcite{Rogozhnikov:boostedreweighting}{9}
\bibcite{ML:ROC_AUC:Bradley:1997:UAU:1746432.1746434}{10}
\bibcite{Breiman}{11}
\bibcite{AdaBoost}{12}
\bibcite{ML:XGBoost}{13}
\bibcite{Punzi:2003bu}{14}
\bibcite{Aaij:2016avz}{15}
\bibcite{LHCb-PAPER-2015-019}{16}
\bibcite{LHCb-PAPER-2012-037}{17}
\bibcite{Skwarnicki:1986xj}{18}
\@writefile{toc}{\contentsline {section}{References}{14}{figure.caption.12}}
\mciteSetMaxCount{main}{bibitem}{18}
\mciteSetMaxCount{main}{subitem}{1}
\mciteSetMaxWidth{main}{bibitem}{770040}
\mciteSetMaxWidth{main}{subitem}{0}